
IOUKNAL OF COMPUTATIONAL PHYSICS 94, 201-224 (199 1)

A Two-Dimensional Adaptive Mesh Generation Method

IRFAN ALTAS AND JOHN W. STEPHENSON

Drpurtment of Mathematics, llnioersrty of Saskatchewan,
Saskatoon, Saskatchewan, Catuzda S7N 0 WO

Received March 6, 1989; revised September 12, 1989

An automatic two-dimensional adaptive mesh generation method is persented. The method
1s designed so that a small portion of the mesh can be modified without disturbing a large
number of adjacent mesh points. The method can be used with or without boundary-fitted
coordinate generation procedures. On the generated mesh a differential equation can bc
discretized by using classical difference formulas designed for uniform meshes as well as the
difference formulas developed in this work. Both cases are illustrated by applying the method
to the Hiemenz flow for which the exact solution of the Navier Stokes equation is known [l 1
and to a two-dimensional viscous internal flow model problem. ? 19YI Academic Preac. Inc

1. INTRODUCTION

Adaptive mesh generation is a promising technique in the numerical solution of
differential equations. An adaptive mesh generation procedure adjusts the location
of mesh points, or adds and subtracts mesh points using feedback from a previous
numerical solution of a problem. In the past two decades, as stated in the rcvicw
paper [2], researchers have developed many sophisticated adaptive mesh methods
for the solution of ordinary differential equations. Significant interest has appeared
during the last decade in generating and applying adaptive mesh to the numerical
solution of partial differential equations [2-5). Significant progress has been made
in finite element adaptive mesh methods [6-g]. Progress has been slower in finite
difference application because of the difficulties associated with discretization on
nonuniform mesh. In this paper, we present an adaptive mesh generation procedure
which adds additional mesh points locally. The resulting mesh in nonuniform and
we derive discretization formulas for this nonuniform mesh.

In order to tind suitable positions for mesh points, most adaptive methods
construct a positive weight function by using some general features of the solution
which may be obtained after a small amount of calculation. The solution domain
is then divided into subregions such that the positive weight function has roughly
equal value over each subregion. Adaptive algorithms mostly differ from each other
in the choice of the weight function as stated in review paper [2].

201
0021-9991/91 $3.00

CopyrIght (1991 by Academic Prers. Inc
AI1 nghrr oi reproductmn in dny form reserved

202 ALTAS AND STEPHENSON

In this paper, we consider a weight function which measures how well the
solution function can be represented by a certain degree of polynomial over a
subregion. We do this by applying a numerical quadrature rule which uses an
approximate solution obtained in the subregion. This approach does not need a
very accurate solution in contrast to some adaptive algortihms in the literature
which form the weight function by using the derivatives of the solution, for exam-
ple, [9, lo]. It also provides us with an elegant stopping criteria for the adaptive
mesh generation algorithm.

The main obstacle in the extension of one-dimensional adaptive methods to
higher dimensional cases is that difference formulas on irregular meshes may not
exist on an arbitrary set of mesh points. Most of the existing adaptive methods
overcome this problem in the following way. They transform the irregular physical
domain to a square computational domain. Then they use a uniform mesh to
generate the difference scheme for the transformed equation. However, a major
deficiency of some of the adaptive algorithms using this approach, as stated in
[111, is a lack of control of mesh skewness in the physical plane. This may cause
larger truncation errors of difference expressions and curvilinear coordinates might
overlap in the physical plane. Another disadvantage of this approach, as stated in
[lo], is that it is not possible to modify a small portion of the mesh during the
calculation without disturbing a large number of adjacent mesh points.

In [lo], P. Luchini has suggested an adaptive method in the physical domain to
modify a small portion of the mesh during the calculation. This method maintains
each point at the center of a symmetrical cross formed with four other mesh points,
with the exception of points lying in the neighborhood of the boundary. This
method applies only to those elliptic partial differential equations in which the
second-order derivatives appear in the form of the Laplacian operator. If there are
boundaries passing between mesh points, Luchini suggested using interpolation or,
to transform the nonrectangular region to a rectangular region with a conformal
mapping, to avoid introducing the mixed derivatives. In the first case, using inter-
polation causes poor representation of boundary values and in most cases the
boundary values are dominant in the solution of the differential equation. In the
second case, the application of conformal mapping is not always possible for
arbitrary boundaries.

Our adaptive procedure has no difficulty handling mixed derivatives because of
our six-point discretization formula described in Section 2. Consequently, we do not
restrict our adaptive algorithm to certain types of boundary fitted coordinate
generation procedures. A mesh similar to that obtained by Luchini [lo] can be
obtained using our adaptive mesh generation procedure when restrictions are
applied to the mesh. These restrictions will be discussed in Section 3.

We introduce the adaptive mesh generation procedure in Section 2, and discuss
the existence of difference formulas in the Appendix. In Section 3, we give addi-
tional restrictions to the mesh generation procedure which guarantees that simple
classical finite difference formulas can be used. In Section 4, we demonstrate some
applications of the method.

TWO-DIMENSIONAL ADAPTIVE MESH 203

2. ADAPTIVE METHOD

The adaptive mesh generation procedure which we have developed, is based
upon using quadrature errors to estimate E, the variation of the solution function.
In our applications, we choose the trapezoidal rule to decide whether the solution
function can be represented by a low degree polynomial over a subregion. However,
the trapezoidal rule may be replaced by other quadrature rules or may be combined
with other formulas if we wish to represent the solution by a higher order polyno-
mial.

We will explain the procedure for a square domain, because for irregular
domains, we propose to use a numerical boundary fitted coordinate generation
procedure which first transforms the given domain into a square domain. Then, the
adaptive procedure given here can be employed.

The adaptive mesh generation procedure can be briefly described as follows. Let
us assume that a solution function u(x, .Y) of the differential equation is available
in the solution domain. The construction of such a solution will be explained later.
We start by dividing the original square into subsquares using a uniform mesh. We
can commence with four subsquares. Then we calculate E for every subsquare in
the solution domain, A subsquare with a value of E which is larger than some
tolerance E, is subdivided again into four subsquares. The idea of subdividing a
rectangular cell into subrectangles based on the value of an error measure is also
used in finite element procedures [7]. See also review papers [6, 121. However,
the generated adaptive mesh in this work will be combined with a finite difference

56

1 2 3

FIG. 1. Different mesh types.

4

204 ALTAS AND STEPHENSON

procedure. This means that some special discretizations on nonuniform mesh will
have to be presented in the sequel.

In order to describe the quantity E mentioned above, consider a subsquare S,
defined by the vertices (xi, yi), (x,,,, yj), (xi, y)+,), and (xi+rr yl+,). For exam-
ple, in Fig. 1 the subsquare defined by the vertices (5,6, 10,9). The trapezoidal
quadrature rule, T,, applied to u(x, y) on S leads to the following error term

I./ u(x, y) ds - T,
s

= E,, = -A (xl+, --xi)2(Yj+ I - Y,)zCu.x~(41, V*) + u,p(5*, U2)1, (2.1)

where T, = (xi+, - XJ(Y,+ I - Yj)M% Y,) + 4x;+ 1) Y,> + 4% Yj+ I) +
U(Xi+i, y,+,)]/4 and (t,, vi), (t2, v~)ES. The left-hand side of Eq. (2.1) measures
how well the solution function u(x, y) can be approximated by a linear function
over S. We do not know the exact value of jiS u ds, however, we can obtain a better
approximation of jsS u ds.

If the square S was divided into four equal subsquares, and we applied the
trapezoidai rule to each subsquare and added the results we would obtain

M~~-T,=E,~ (2.2)

where

T2 = (xl+ 1 -xi)(~j+ I- Yj)[l4xi, Y.j) + 4-~t+ ty Yj) + 4-y,, Y,+ 1)

+G;+l, Y.j+ I) + 2(u(xl+ l/23 Yj) + u(xi+ I9 Y/t 1;2)

+~(X;+1!2r Yj+l)+u(“;, YI+u~))+~~X~+L,Q> Y~+1/2Il/l6

and (xi+ 1,2, yi+ 1,2) is the center of S.
By subtracting Eq. (2.1) from Eq. (2.2) we obtain

E=/l-,-T,(=(x,+~- xi)(l‘j+l- Y,) IC3(u(xi, Yj)+ u(.yi+13 Yj)

+4x;, Y,+1)+~(x,+l> Y,+,))-2(~(-~;+1,2~ Vi)

+4xi+,, 4',+1,2)+4x,+1:2> Y,,,)

+ u(xi, ~j+ w)) - 4u(xi+ ,!2, Y,, ,d//16. (2.3)

The quantity E in Eq. (2.3) measures the variation of the solution function and is
in a form that can be used in a numerical algorithm. By using Taylor expansions
of the functions about the center point (xi+ ,i2, Y,+,!~) of S one can show that
theoretically the quantity given by the right-hand side of Eq. (2.3) is equal
to (-%,I - xi)(Y,+l - .Y,)12txi+1 - xi)2u.~~(xi+l~2~ Yj+1/2) + 2(Y,+ I - YjJ2
uy,,(xi+ rj2, yi+ li2) + Rl/16, where R is the remainder term in Taylor expansions.

TWO-DIMENSIONAL ADAPTIVE MESH 205

In order to evaluate E given in Eq. (2.3) we need to obtain values of the solution
function u at the center and midpoints of the edges of S. However, u is only known
at the vertices of S. We note that S is a subsquare of a larger square LS, defined
by the vertices (5, 7, 18, 16) in Fig. 1. We construct an interpolation polynomial

P(x, y) = a, + a,x + a2 y + 0~2 + u,xy + a5 y2 + u,x’y + a,xy2 (2.4)

with

a0 = UIO

a, = (4u,, -4u,,- us - u18 - u7 - u,~ + 2u,, + 2u,)/4h

02 = (u,, - u,)Ph

a3 = (u5 + u,* + u,~ - 2u,, - 2u, + u,)/4h2

u4 = (u18 + u5 - u16 - u,)/4h2
(2.5)

Us = (U,, + td,5 - 2u,,)/2h2

a6 = (-u5 - ~7 + ~1~ + u16 + 2~~ - 2Z+)/4h3

a7 = (u7 + u,X - !i,7 - u6 + 2u,, - 2u,,)/2h3,

where U, is the value of the function u at the mesh point i and h = x, - x0. Note that
we have only used eight of the nine available values of the solution by excluding
the mesh point 9. For another combination of eight mesh points we obtain a
different interpolation polynomial. In this sense, the interpolation polynomial (2.4)
is not unique.

The interpolation polynomial P(x, y) can be used for any required value of the
solution function u in LS. This procedure can always be applied in our adaptive
mesh, since every subsquare can be embedded in a larger square. These inter-
polations on subregions are expensive and require some reasonable amount of
bookkeeping. Since the values of u in Eq. (2.3) are needed for the purpose of mesh
generation only, therefore, some reasonable approximation will do the same job.
Let us assume that the subsquare under investigation is (5, 7, 18, 16) in Fig. 1 and
the values of u are required at the mesh points 6, 11, 17,9, and 10. We estimate the
value of u,, by u,, = ,vu,~ + (1 - ,v)u,, where 0 < u’ < 1. The value of M’ can be
chosen depending on the slope of u at the mesh point 11. In our applications, after
several experiments, we selected ,V = $ if U! = (u,~ - u7)/(~1,~ - y7) is positive,
otherwise M’ = 4. The values of u,~, uy, and ug are obtained similarly. For the
midpoint 10 we simply average the values of u at the corner points 5, 7, 18, 16.
Experimentation has shown us that this procedure gives an adaptive mesh almost
identical to the mesh produced using the interpolation formula (2.4).

The following algorithm uses Eq. (2.3) to generate an adaptive mesh.

ALGORITHM 2.1. Given a discrete solution function u(x, ~1) on a uniform mesh
in R = [O, 1] x [0, 11, construct a set of adaptive mesh points {(xi, y,), i = 0, N

206 ALTAS AND STEPHENSON

and j = 0, N} which partitions R into square subregions on which E, evaluated
by Eq. (2.3), is less than some tolerance E.

1. Start by using the subregions generated by a uniform mesh.
2. Evaluate E using Eq. (2.3) on each subregion.
3. Subdivide the regions with the quantity E larger than a given tolerance E

into four equal subregions.
4. On the new mesh points, either obtain a new approximate solution to the

problem or use interpolated values of the previously obtained solution.
5. Continue steps 2 to 4 until the largest value of E is less than e.
6. Solve the problem on the final mesh.

In practical applications of Algorithm 2.1 we have employed both of the
suggested ways in the fourth step. We obtained a more evenly graduated mesh by
solving the problem after completion of step 3 than by using the interpolated values
of the solution on the new mesh points. We have also observed that in these inter-
mediate steps, it is not necessary to obtain an accurate solution. An approximate
solution obtained from a few iterations of SOR will do. Experiment has shown us
that the mesh obtained using this crude approximation is almost the same as that
obtained using a fully converged solution. Hence, for these intermediate steps we
use relatively large error tolerances in the iterative solution of the system. The value
of F can be specified after the first completion of the step 2 by using some combina-
tion of the largest and smallest values of the quantity E. Hence, this tolerance is
problem dependent and can be automatically determined.

The mesh generated by Algorithm 2.1 is nonuniform. We cannot directly apply
the classical difference schemes like central differences. Hence, in order to generate
difference formulas about every interior mesh point, which we call a central mesh
point, we need to select a certain number of neighbouring points. We call this set
of mesh points a computational cell. In the selection of computational cells we
apply certain criteria which leads us to develop some useful difference formulas.
First, a difference formula should exist on the chosen mesh points. Second, the
mesh points in a computational cell should be as close as possible to the central
mesh point in order to reduce the magnitude of the truncation error of the dif-
ference formula. We define a mesh ratio on a computational cell as the maximum
ratio of the distances of two mesh points from the center point of the cell. In other
words, mesh points should be chosen so as to keep the mesh ratio small. Finally,
the mesh points of a computational cell should be chosen from as many different
directions as possible.

In order to form a difference approximation for each interior mesh point, we
must first choose an appropriate computational cell. The choice of mesh points in
the computational cell depends upon the classification of the interior mesh point.
An interior mesh point can belong to either three squares or four squares. A mesh
point belonging to three squares, is the vertex of two squares and lies on one of the

TWO-DIMENSIONAL ADAPTIVE MESH 207

edges of the third square. We can separate those types of mesh points in two dif-
ferent categories. The first case is when the two squares which have the mesh point
as a vertex are equal. The second type is when the two squares are not equal. The
mesh points which are the vertices of four squares can be separated into live
categories. The first case is when the four squares are equal. Second, three of the
squares are equal. The third case is when two of the squares are equal to each other
and the other two squares are also equal to each other. The fourth case is when two
of the squares are equal to each other and the other two are unequal. The fifth case
is when the four squares are unequal. Hence, we can identify all interior mesh
points in seven different categories. Those seven different types of mesh points are
given in Fig. I as the mesh points 5, 6, 7, 10, 16, 18, and 47. We only have to
generate difference formulas for these seven different types of mesh points.

In order to classify the mesh points according to the above discussion, we first
number every subsquare and every mesh point in the initial mesh. We store the
numbers of the subsquares belonging to a mesh point in a vector. Another vector
holds the mesh numbers of the vertices of a subsquare. In a third vector we store
the mesh type according to the above classification. When a subsquare is refined,
the information in the vectors is updated.

In practise, without any restriction in mesh generation, some of the desired
properties of a computational cell might not be met. For example, we can
experience some difficulties in the convergence of iterative methods used to obtain
a solution because of high mesh ratios. In order to avoid such problems, we require
a control mechanism in step 3 of Algorithm 2.1. A successful control was developed
using a measure called edge ratios, the maximum ratios of the edges of neigh-
bouring squares which contain a given mesh point, The control imposed by the
edge ratio aborts a subdivision determined by the quantity E if the edge ratio in the
sugdivision will exceed a given number. All the desired properties of a computa-
tional cell were obtained in a relatively simple way by this device,

In our computations, we restricted the edge ratio to be 2. However, we have not
observed a significant difference in the adaptive mesh generated with the edge ratio
2 and the edge ratio 4. Furthermore, the mesh types described above are reduced
from 7 to 4 with edge ratio 2, whereas it is only reduced to 6 with the edge ratio
4. The mesh types denoted by the numbers 5, 16, and 18 in Fig. 1, are eliminated
if the edge ratio is 2. The detailed explanations and comparisions of those two cases
are given in [13]. Consequently, the data management is simplilied. Another
advantage with the edge ratio 2 is that it is possible to obtain the classical five-point
symmetrical computational cell which will be explained later in Section 3.

For the remaining four mesh types, we choose the computational cells as follows.
For the central mesh point 6 in Fig. 1, we choose the mesh points (6, 7, 11, 10. 5,2>
as the computational cell. Note that the mesh point 11 can be replaced by a nearer
mesh point to the center point in this computational cell whenever there is a further
subdivision of the subsquare defined by mesh points (11, 18, 17, 10). For the mesh
type denoted by 10 in Fig. 1, the selected computational cell is (10, 11, 18, 17, 9, 6).
The computational cell for the mesh point 7 is {7, 8, 11, 10, 6, 3 }. This mesh type

208 ALTAS AND STEPHENSON

can also be in the form given by the mesh number 34 in Fig. 1. In this case the
chosen computational cell is (34, 35,43,42, 33, 27). The last mesh type is denoted
by either the mesh number 29 or 47 in Fig. 1. The computational cells for those
mesh points are (29, 30, 38, 37, 28, 22) and (47, 48, 58, 46, 28, 371, respectively.
We also have rotations of the given mesh types above by 90 “, 180 ‘, and 270 ‘I.
Rotations do not affect the existence of difference formulas. So, we do not discuss
those cases here. We give the generated difference formulas on those computational
cells in the Appendix.

3. SYMMETRIC COMPUTATIONAL CELLS

When the differential equation does not contain a mixed derivative, we derive
another advantage by restricting the edge ratio to 2. In this case, we do not have
to generate special difference formulas. Classical finite difference formulas, for exam-
ple central difference, can be used with these symmetric live point computational
cells. We illustrate this by applying our adaptive mesh generation technique to
some elliptic problems in Section 4. For the mesh points 6, 10, 7, 34, 29, and 47
discussed in Section 3, we can easily choose symmetric computational cells except
for the mesh point 6 as we can see from Fig. 1. The symmetric computational cells
for the mesh points 10, 7, 34, 29, and 47 are (10, 11, 17, 9, 6}, {7, 8, 18, 5, 3},
{ 34, 35, 42, 33, 27}, (29, 31, 48, 28, 14), and (47, 48, 58, 46, 28 }, respectively.

From Fig. 1, we can see that we must add an extra mesh point to the adaptive
mesh in order to define a symmetric computational cell for the mesh point 6. In
Fig. 1 we indicate this mesh point by -t and call it c. It is the intersection point of
the diagonals of the square with the vertices (2, 3, 7, 5). In this case, the symmetric
computational cells for the mesh point 6 is (6, 7, 10, 5, c). This additional mesh
point creates one more mesh type. If we consider the point c as the origin and the
length of one of the edges of the square (2, 3, 7, 5) as 2h, then the derivatives at c
can be approximated in three ways:

(i) If the second derivatives in the differential equation occur only in the form
of the Laplace operator, then we can approximate derivatives with the following
difference schemes.

u,, + u,,. = (u, + us + u2 + u3 -4u,.)/(2h2) + O(h2)

ul. = (UT + ug - u2 - 24,)/(4/l) + O(h2) (3.1)

24, = (u, - us - l42 + u,)/(4h) + OW).

(ii) We can approximate the value of the solution function at the mesh point
c by interpolation. We use the mesh points { 7, 10, 16, 5, 2, 6) to obtain a second-
degree interpolation polynomial. This approach removes the restriction in case (i)
that the second derivatives appear only aggregated in the Laplacian form. However,
we do not recommend this interpolation, although it is one of most common

TWO-DIMENSIONAL ADAPTIVE MESH 209

techniques in the literature, since it lowers the accuracy of the overall difference
scheme, as we will demonstrate in Setion 4.

(iii) Suppose that the differential equation under consideration is invariant to
rotation. This is the case in many of the fluid dynamics problems if there is no
external force acting. Then the only difference between this mesh type and the mesh
type of the mesh point 10 is in the mesh width. The mesh width of this mesh type
would be &h if the mesh width of the point 10 is h. However, if the differential
equation is variant to rotation, then it can be transformed for this mesh type by
rotating the coordinate variables by 45”.

4. APPLICATIONS

In this section, our purpose is to demonstrate the application of the adaptive
mesh generation procedure which is proposed here and to show that the adaptive
procedure could be used with the classical difference scheme as well as the difference
formulas proposed in this work. We were not trying to obtain extremely accurate
solutions to the chosen problems.

We applied the adaptive mesh generation technique to three different problems.
Problem 4.1 is a linear problem taken from [141. Problems 4.2 and 4.3 represent
the extension of the method to nonlinear problems. For the problems given here we
obtained crude solutions either on a 16 x 16 or a 8 x 8 uniform mesh and used these
in the adaptive mesh generation. We obtained the uniform mesh solutions by using
central difference approximations of the derivatives. We used successive over relaxa-
tion to solve the systems which result from discretization of the differential equa-
tions. We used 10e6 to be the convergence criteria for the iterations. We performed
all the computations in double precision on a VAX 8650.

Problem 4.1.

u C.Y + U.I., - 100~ = 0.5(p2 - 100) cosh(py)/cosh p (4.1)

with the exact solution

u(x, y) = O.S(cosh(lOx)/cosh 10 + cosh(p)t)/cosh p)

and boundary conditions obtained from the exact solution.

(4.2)

This problem is taken from [14]. Contours of the exact solution are given in
Fig. 4. For p # 10, boundary layers occur near both x = 1 and y = 1. The boundary
layer along x = 1 is thicker than the boundary layer along 4’ = 1. The variable p
adjusts the strength of the boundary layer along y = 1. When the value of p
increases, the boundary layer becomes thinner. We solved this problem for p = 80
which is the largest possible value without having overflow in our machine. The
generated adaptive mesh and contours of the numerical solution are given in Fig. 5

210 ALTAS AND STEPHENSON

TABLE I

The Maximum Absolute Errors Obtained from Problem 4.1

Mesh No. 160 423 818

Max. Abs. Error 0.232 0.128 0.037

and Fig. 6, respectively. The numerical results are reported in Table I. The results
are obtained using our six-point formula.

The efliciency of the adaptive mesh procedure can be appreciated when we com-
pare the absolute maximum error obtained with a uniform mesh. The error is 0.039
for this problem when we use a uniform mesh with 4225 mesh points. This result
corresponds to the adaptive solution obtained with 818 mesh points which is i of
the uniform mesh number.

Problem 4.2. As a second example, we applied the adaptive mesh generation
technique to the Hiemenz flow for which the exact solution of the Navier-Stokes
equation is known [11. The fundamental equations for two-dimensional incom-
pressible flow of a Newtonian fluid with no body forces are two momentum
equations

and

(4.3 1

(4.4)

and the continuity equation,

au/ax + agay = 0. (4.5)

The underbars indicate dimensional quantities and u and _v represent velocity com-
ponents, while p, 7~ and p are the pressure, mass density and kinematic viscosity
respectively. -

We can obtain a numerical solution from Eq. (4.3)-(4.5). However, we prefer to
use the stream function-vorticity formulation given in [15]. Then, the relevant
equations, in terms of scalars, are invariant to rotations. This property can be used
for the symmetric computational cell designed for the mesh point c in Fig. 1 and
explained in Section 3.

The stream function-vorticity formulation of the Navier-Stokes equations, in a
generic Cartesian coordinate system, can be written as

A,ll/=w (4.6)

A 2 W = R(d$jay &#X - i?$/a.X dW/ay), (4.7)

TWO-DIMENSIONAL ADAPTIVE MESH 211

where R=_u,L/p is the Reynolds number, Ic/ is the stream function, M, is the
vorticity, go is the characteristic velocity, and & is the characteristic length.

We now obtain the exact solution of Hiemenz flow. For viscous flow, we make
the assumptions u = x dF(y)/dy, u = -F(J)), where F is some undertermined
function. By this assumption, the equation of continuity, Eq. (4.5), is satisfied
identically. The corresponding solution of the Navier-Stokes equation in stream
function-vorticity form is

$ = xF(Y), M’ = x d2F/dy2. (4.8)

By substituting Eq. (4.8) into both Eq. (4.6) and Eq. (4.7), we see that the first
one is satisfied. The latter one, after few manipulations, takes the form

d’Fh&a3 - R[- F(d2F/dy2) + (dF/dy)2 - l] = 0 (4.9)

with the boundary conditions F(0) = dF/dylo = 0, dF/dy = 1 as y --) co. Similar solu-
tions can be obtained by eliminating R. We write q = fiy and F= @(n)/fi and
substitute these values into Eq. (4.9) to obtain

d3@/dq3 + @(d2@/dq2) - (d@/dy)‘- 1 = 0 (4.10)

with the boundary conditions Q(O) = d@/dvl, = 0, d@/dq = 1 as y -+ co.
In order to discretize Eq. (4.6) and Eq. (4.7), we choose the difference scheme

given in [lo] and treat boundary conditions in a different way. The difference
scheme applied to this problem is not an efficient difference scheme. We have tried
to obtain the solution with 64 x 64 uniform mesh points for R = 100, but the itera-
tion procedure did not converge in a reasonable time. In this difference scheme, the
upwinded form of the equations is used, and each convective term is modified with
a suitable correction factor in order to restore the approximation of central differen-
ces. The central difference approximation is used for Eq. (4.6). The difference
approximation of Eq. (4.7) is

iv! + 1~2 + w3 + 1~~ - 4nY,, = R[c, (I//~ - I/?~)(w~~ - w3) - cz(t,bl - $3)(~‘Z - w,)]/4,

(4.11)

where the subscripts show the mesh numbers given in Fig. 3. We assume
ti2-(c14>0, $1-Ic/3>0 and

c, = (w , - w3)/(M’[] - w3), c2 = (w2 - U’J(w2 - M’()). (4.12)

If ti2 - J/4 and/or $, - $3 are negative, the upwinded differences must be taken
in the opposite direction in both Eq. (4.11) and Eq. (4.12).

In the iteration process, M?~ is recalculated at each step as

Iv” = { U’, + M’2 + w3 + M’4 - UM’~ + R[c, (ICI2 - $4)~“~

+C~(~~-~~)~V~I/~}/(~-~+R[C,(~,-IC/~)+C,(II/,-~~/,)~/~), (4.13)

581.‘94’1-15

212 ALTAS AND STEPHENSON

Y

y/=0

w=o

v; x w=o

FIG. 2. Boundary conditions for Hiemenz flow.

while the old value of w0 is used in c, and c2 in Eq. (4.12). The parameter, a, can
be used to overrelax or underrelax the iteration process. If the denominator of c,
and/or c2 is near to zero in machine precision, then we take c, and/or c2 to be 1.
The reason is that the ratio must be close to 1 when the difference approximations
approach the exact value of the derivative.

In order to obtain the numerical solution, we use a square domain with a vertex
at the stagnation point and two sides of the square lying along the coordinate axes.
The boundary conditions of the problem, as in [lo], are shown in Fig. 2.

Note that the y axis is an axis of symmetry for the solution. The boundary condi-
tion $, = 0 on the lower side of the square can be expressed as a condition for w
by using the Thorn formula [15] which will be given below. On the upper side of
the square, the flow field is given by the asymptotic ittotational form of the stream
coming from infinity. This approximation is valid if the size of the square is large
enough as stated in [lo]. However, this condition is not very critical since its error
is of exponentially small order. On the right side, the boundary conditions are given
in an exact form by using the exact form of the solution (4.8), where L is the length
of a side of the square.

We now explain the approximation of the derivatives on the boundaries for the
right boundary of the square shown in Fig. 2. The approximation for the other
boundaries is similar.

2 2 1

fjjl i” I(2/d2jh
4

(a) (b)

FIG. 3. Symmetric computational cells

TWO-DIMENSIONAL ADAPTIVE MESH 213

0.9-
In
6
'0 0.8-
s
ti 0.7-
;s:
" 0.6-

s
2 0.5-

ti
2 0.4-

FIG. 4. Contours of the exact solution of Problem 4.1.

The derivatives can be approximated by a first-order backward difference
formula. For the mesh types given in Figs. 3(a) and (b), they are respectively

(4.14)

If we wish to approximate the derivatives on the boundary with a second-order
formula, then we use a three-point formula for the symmetric computational cells
in Fig. 3(a) to obtain

~,I,=(~3+311/1-4~o)/h+O(h2). (4.15)

For the computational cell in Fig. 3(b), we start by once again examining its struc-
ture. If we look at Fig. 1, we must have a mesh point on the midpoint of either the
side (1, 21, 12, 3}, or (3, 4) of the square given in Fig. 3(b). Let us call this mesh
point 5:

(i) If the mesh point 5 is on the side { 1, 23 of the square, then by using
System (5.1) given in the Appendix we can obtain the approximation of the
derivatives at the point 4 in the form

ti, I4 = -&(4$5 - 2IcIz + $3 - 2rl/, - $,)/(2h) + W2) (4.16)

and at the mesh point 1, we can use the three-point formula (4.15) and replace h
by Wj’%.

214 ALTAS AND STEPHENSON

i
00 0.1 02 0.3 04 0.5 06 07 08 09 10

FIG. 5. Adaptive mesh for Problem 4. I.

(ii) Similarly, if the mesh point 5 is on the side {3,4}, then at the point 1 we
obtain

0.9-
u-l
d
n oa-
s
g 0.7-
r!
O. 0.6-
2
2 0.5-

? 04-
d

- F 0.3-
0

t 0.2-
3
'; O.l-
LI

0.0
I I I I I I I I

(4.17)

0.0 0.1 0.2 0.3 0 4 0.5 0.6 0.7 0 8 0.9 1.0

FIG. 6. Contours of the numerical solution of Problem 4.1.

TWO-DIMENSIONAL ADAPTIVE MESH 215

and at the mesh point 4, we can use the three-point formula (4.15) again by
replacing h with (l/$)/z.

(iii) If the point 5 is on the side (2, 3}, then we have

~,1~=-~(-4~~+~~+21C/~-~,+4~~-2~~)/(2h)+O(hz)

$\/I= -~(-4~5+2~z+~3+4lClO-~4-2~,)/~2/1)+0(/1*).
(4.18)

In order to transform the boundary condition tiJ=O at the wall to a condition
for the vorticity function W, we use either the two- or three-point, no-slip condition
Thorn formula [15]. For the mesh types l-4 in Fig. 3(a), the formulas are standard
ones. That is, the two- and three-point no-slip conditions are given, assuming the
mesh point 4 is on the wall, by

ll'4 = 2($” - $Jh2 + O(h)

and

M’4= 3(11/,-l/L#I*- $v()+ O(P), (4.19)

respectively. For the computational cell in Fig. 3(b), the two- and three-point
no-slip conditions become, respectively,

u'4=2(ti1-~4)/[(2/~)h1*=(II/,-ll/4)/h2+~(h)

Forw = 0021, 0.085,0254, and 123

25

05

i

0.0 05 I .o 1.5 20 25 30 35 4.0

FIG. 7. Contours of the vorticity obtained from Eq. (4.10), R = 9.

216 ALTAS AND STEPHENSON

For w = 0.021, 0.085, 0.254, and 1.23

3.0-

25-

20-

1.5-

1.0

05 1 o.oj
00 05 10 1s 2.0 2.5 3.0 35 4.0

FIG. 8. Contours of the vorticity obtained from Eq. (4.10), R = 100.

4

0 I 2 3 4
FIG. 9. Adaptive mesh for Hiemenz flow, R = 9.

TWO-DIMENSIONAL ADAPTIVE MESH 217

FIG. 10. Adaptive mesh for Hiemenz flow, R = 100.

and

M’q = 3($, -- $‘J[(Z/$)h]‘- $v, + 0(/P). (4.20)

We generate the adaptive mesh according to the vorticity function ~1. In this
problem a boundary layer appears near the wall for the vorticity function M?. The
value of u’ decreases to 0 as the distance from the wall increases. The thickness of
the boundary layer depends on the Reynolds number R. The thickness of the
boundary layer region shrinks with the ratio l/fi.

We solve this problem for two different values of the Reynolds numbers, namely,
R = 9 and R = 100 in a square whose side length, L, is 4. For R = 9 and R = 100,
the boundary layers occur approximately in the regions 0 < y < 1 and 0 < J’ < 0.3,
respectively, as shown in Figs. 7 and 8 which are obtained from the solution of the
ordinary differential equation (4.10). The adaptive mesh generated for R = 9 and
R = 100 and contours of vv obtained from the solution of Eq. (4.7) are given in
Figs. 9, 10, 11, and 12, respectively.

In [lo], it has been stated that the second-order approximation of the
derivatives on the boundary were also tested. There was really no significant
improvement over the results obtained by first-order approximations. We observe

218 ALTAS AND STEPHENSON

Forw=O021,0085,0254,and 123

0.0 0.5 1 0 1.5 20 2.5 30 3.5 40

FIG. 11. Contours of the vorticity obtained from Eq. (4.7), I? = 9.

For w = 0 02 1, 0.085, 0.254, and 1 23

0.0 0.5 1.0 15 20 2.5 30 3.5 4.0

FIG. 12. Contours of the vorticity obtained from Eq. (4.7), R = 100

TWO-DIMENSIONAL ADAPTIVE MESH 219

TABLE II

The Numerical Results for Hiemenz Flow with R = 9. First-Order Approximation
of Boundary Conditions

Mesh no. Error type

.x= 1, y=o.5 .x = 3, ?’ = 0.5 x = 3.75, J’ = 0.5

i ,I t,b II’ * M’

146 Absolute 0.046 0.11 0.045 0.10 0.044 0.10
Relative 0.13 0.26 0.044 0.085 0.035 0.068

716 Absolute 0.010 0.025 0.010 0.024 0.0098 0.029
Relative 0.034 0.050 0.010 0.015 0.0086 0.012

1469 Absolute 0.0028 0.0066 0.0026 0.0061 0.0026 0.0061
Relative 0.0094 0.012 0.0029 0.0039 0.0023 0.003 1

in our numerical experiments that the second-order approximation of the
derivatives on the boundary improves the results. We give the numerical results
obtained from the first- and second-order approximations of derivatives on the
boundaries in Tables II and III, respectively.

Interpolation is one of most common techniques used to handle interface mesh
points. The broad discussion of this subject can be found in [161. For this problem,
we also decided to use interpolation for the mesh type denoted by c in Fig. 1. For
this type of mesh, we employ a second-degree polynomial interpolation which was
explained in Section 3 as (ii). On the other mesh types we still discretize the
differential equation and use first-order approximations of the derivatives on the
boundaries. Table IV shows the numerical results obtained from such a difference
scheme. If we examine the table, we see how the results are spoiled by interpolation,
especially for larger mesh numbers.

The numerical results obtained for R = 100 are given in Tables V and VI.

TABLE III

The Numerical Results for Hiemenz Flow with R = 9. Second-Order Approximation
of Boundary Conditions

Mesh no.

146

716

1469

Error type

Absolute
Relative

Absolute
Relative

Absolute
Relative

x= 1, y=o.5 x = 3, I‘ = 0.5 s = 3.75, J’ = 0.5

* I, * ,I’ * 11‘

0.025 0.079 0.023 0.039 0.023 0.040
0.042 0.086 0.024 0.026 0.019 0.021

0.0045 0.0077 0.0039 0.006 0.0037 0.0053
0.015 0.014 0.0044 0.0038 0.0033 0.0027

0.0013 0.0020 0.001 1 0.0013 0.0011 0.0016
0.0045 0.0039 0.0016 0.0010 0.0010 0.0008

220 ALTAS AND STEPHENSON

TABLE IV

The Numerical Results for Hiemenz Flow with R = 9. Second-Degree Interpolation Approximation
of the Mesh Types denoted by c in Fig. 1

x= 1, 1=0.5

Mesh no.

146

716

1469

Error type * II

Absolute 0.032 0.10
Relative 0.12 0.24

Absolute 0.089 0.065
Relative 0.43 0.14

Absolute 0.10 0.056
Relative 0.57 0.11

x = 3, y = 0.5

-
i II + 1%

0.067 0.065 0.064 0.093
0.099 0.046 0.074 0.056

0.096 0.052 0.093 0.066
0.16 0.036 0.12 0.038

0.10 0.059 0.1 I 0.054
0.19 0.042 0.16 0.030

.Y = 3.75, y = 0.5

Problem 4.3.

u,, + u>> + y(1 - I’)(1 - 2.x) RUM, + x(1 - x)(1 - 2~‘) Ruu,

-[x(1-x)+L’(~-y)] R(u’-l)=O. (4.21)

Equation (4.21) is the representative of a two-dimensional viscous internal flow
model problem and is taken from [171. The solution domain is the unit square
0 6 x < 1, 0 < y < 1. The boundary conditions used are

u(0, y) = u(1, y) = U(X, 0) = 24(x, 1) = 0. (4.22)

The exact (steady state) solution of Eq. (4.21) together with Eq. (4.22) is

U(X, I/‘) = tanh(x(1 - X) J(1 - y) R/2). (4.23)

TABLE V

The Numerical Results for Hiemenz Flow with R = 100. First-Order Approximation
of Boundary Conditions

x= 1, 1‘=0.125 u=3, ~==0.125

Mesh no. Error type * 11’ lj/ IL’
-

382 Absolute 0.037 I .34 0.030 1.34
Relative 0.35 0.98 0.11 0.32

800 Absolute 0.010 0.25 0.010 0.25
Relative 0.13 0.10 0.045 0.034

1673 Absolute 0.0054 0.077 0.0048 0.056
Relative 0.077 0.029 0.022 0.0070

Y = 3.75, x=0.125

0.036 1.30
0.095 0.26

0.010 0.22
0.035 0.023

0.0012 0.085
0.0052 0.008 1

TWO-DIMENSIONAL ADAPTIVE MESH

TABLE VI

The Numerical Results for Hiemenz Flow with R = 100. Second-Order Approximation
of Boundary Conditions

221

Y= I, ,r=o.125 r=3, J,=o.l25 I = 3.75, J = 0.125

Mesh no.

382

800

1673

Error type * ,I‘

Absolute 0.025 0.60
Relative 0.27 0.28

Absolute 0.0064 0.044
Relative 0.087 0.016

Absolute 0.0043 0.016
Relative 0.06 I 0.0060

i II’

0.023 0.51 0.018 0.19
0.087 0.077 0.057 0.020

0.0063 0.030 0.0059 0.01 I
0.028 0.0037 0.02 1 0.00 1 I

0.0032 0.0052 0.0013 0.0094
0.015 0.0007 0.0054 0.0009

In this problem, very large gradients are developed on all four boundaries as
R -+ CC and the resulting flow characteristic is a very thin boundary layer at all the
surfaces. The generated mesh for R = 300 is given in Fig. 13. Linearization is done
by using old values at each iteration step. The numerical results, which are obtained
by using both symmetrical and six-point computational cells, are reported in
Table VII. The uniform mesh needs 4225 mesh points in order to obtain 0.051
accuracy in terms of absolute maximum error for this problem.

0.6

0.0 0.1 0.2 0.3 04 05 0.6 07 08 09 1.0

Fro. 13. Adaptive mesh for internal viscous flow, R = 300.

222 ALTASAND STEPHENSON

TABLE VII

The Maximum Absolute and Mean Square Root Errors for Problem 4.3, R = 300

Mesh no.

437

1397

Error type 6-point formula

Mean 0.13
Max. abs. 0.34

Mean 0.026
Max. abs. 0.06 1

Central difference

0.10
0.21

0.022
0.052

5. CONCLUSIONS

We have developed an adaptive mesh generation method using quadrature rules.
We modify mesh locally by adding new mesh points. In our approach, the addition
of new mesh points into the mesh is straightforward. For the deletion of mesh
points, we reverse the algorithm. In order to delete a mesh point, we check the
quantity E, given by Eq. (2.3) over four subsquares which are obtained from the
subdivision of the same subsquare. If the quantity E is less than a specified
tolerance for all four subsquares (and the edge ratio restriction is satisfied), then the
mesh points of that subblock are deteled. However, this approach needs extra
bookkeeping and therefore may not be an efficient way. The work in this direction
is still under investigation.

The adaptive method given here can be used with or without boundary-fitted
coordinate generation procedures. It does not require any a priori knowledge of the
locations of large variations in the solution function. It automatically generates the
complete mesh. Computational cells in our adaptive mesh can be chosen to apply
our six-point finite difference formulas as well as to appy the classical finite
difference formulas.

The adaptive method generates a well-suited mesh for problems whose solutions
have large variations like large gradients, boundary layers, and sharp peaks. The
method also handles problems having mild singularities in their solutions. Unfor-
tunately, our adaptive method does not work well for highly oscillatory problems.

In order to get the same accuracy from the adaptive and the uniform mesh, the
mesh number for the adaptive mesh is usually $ of the uniform mesh number for
the examples given in Section 4. However, when we require more accurate solutions,
this ratio would be smaller. The reason is that the adaptive mesh generation proce-
dure puts more points in the regions where they are needed.

To answer the question whether a better mesh can be obtained by using a more
accurate solution, we used the exact solution to generate the adaptive meshes for
Problem 4.1. We have observed that this did not make a significant difference in the
generation of the adaptive meshes. However, a cheaper and more efficient way to

TWO-DIMENSIONAL ADAPTIVE MESH 223

generate adaptive mesh would be to combine the method with a multigrid algo-
rithm. Work in this direction is progressing. We also plan to generalize the adaptive
mesh and formula generation to higher dimensional problems in our future work.

APPENDIX

After we have obtained the computational cells about every mesh point, we
approximate the derivatives of the solution function, U, on computational cells by
using Taylor series expansion about the central mesh point. Let u = u(x, y) E C’ and
Z= ((xi, yi)) i=O, 1, 5 and (x,, y,)=(O,O)} re resent p a computational cell.
The value of u at (xi, J,) is defined by ui = u(xi, y,). From the Taylor series expan-
sion of U,‘S about (0, 0), the central mesh point, we have

ui-uO=X,U~,+yjU,.+(xf/2)U~~-+,~~?’,U~,~+(y~/2)U~.~,,, i= 1, 5. (5.1)

Here, we have neglected the remainder terms in Eq. (3.1). We may interpret
Eq. (5.1) as a set of linear equations in five unknowns u,, u,, u,,,, uYV, u,, . Now,
if the above system (5.1) has a unique solution for the computational cell, ‘then we
have difference approximations for the derivatives. This is guaranteed by the
following theorem and the proof of this theorem is given in [18].

THEOREM 5.1. Let ii = (xi, yi), i = 0, 4, be distinct points in the x-y plane with
ut most three of them on the same line in the x-y plane. Let M’, be the vectors w, =
{xi. y,, (x:/2), xi y,, (y:/2)}, j = 1, 4. Assume that d,, j = 1, 5, are the determi-
nunt values obtained by deleting the jth column qf the matrix [WY,, wz, M‘~, N’~]~.
Then, the above system has a unique solution if the sixth point, i5, is not chosen on
the conic d, x - dz y + (d3/2)x2 - d,xyl + (d,/2) y2 = 0.

One can show that the hypothesis of Theorem 5.1 is satisfied with the computa-
tional cells chosen in this paper. We illustrate the generated difference formula for
the computational cell about the mesh point 6 in Fig. I by taking the coordinates
of the mesh points 6, 7, 11, 10, 5, and 2 in terms of h as follows:

zo = (0, O), ~1 = (h, 01, i2 = (ah, bh),

z3 = (0, II), zz,=(-h,O), zs = (-h, -2h).
(5.2)

We let the coordinates of iz = (ah, bh), where a and b are constants, since the
position of the mesh point 11 might be changed depending on the distance to the
center mesh point 6. Then, the solution of Eq. (5.1) gives

u,.=[(4ba-2b’+2-2a2)u,-t(a+u2)u,-2u~+(-4ab+2b2)u,

+ (a’- a - ab)u, -t ubuJ/[-2hb(3a - b + 1)]

224 ALTAS AND STEPHENSON

u,,.=[(2-26a-2b-2a2)u,+(u+a2)u,-2u,+(ah+2b)u,

+ (a* - a - uh)u, + ubu,]/[h*h(3u - h + l)]

lA .I..,, =[(6-2b’-4h-6u2)u,+(3u+3u2)u,-6u,+(4h+2h2)u,

+ (3a2 - 3u - h2 + h)u, + (h2 - b)u5]/[- 2h2b(3u - b + 1)]

u,, = (u, + uq - 2u,)/h2

u, = (u 1 - u,)/2h. (5.3)

From Eq. (5.3), we see that the formulas would not exist if either b = 0 or
3u - h + 1 = 0. This corresponds to the lines y = 0 and y = 3x + 1, respectively. Note

that those two lines are the degenerated form of the conic defined in Theorem 5.1
by the mesh points zO, z,, z3, z4, and z5. In our computation cell choice strategy,
the mesh point z2 cannot be on either line. Similarly, difference formulas for the
other types of computational cells may be obtained by solving (5.1) in each case.

REFERENCES

I. H. SCHLICHTING, Boundary Luyer Theory (McGraw-Hill, New York, 1968), p. 78.
2. J. F. THOMPSON, Appl. Numer. Math. 1, 3 (1985).
3. R. D. RUSSELL AND J. CHRISTIANSEN, SIAM J. Numer. Anal. 15, 59 (1978).
4. D. A. ANDERSON, in Proceedings, Internationul Conference on the Numerical Generution of

Curvilinear Coordinate Systems and Their Use in the Numericul Solution of Partial DiJferential
equations, Nushuille, Tennessee, 1982, edited by J. F. Thompson (North-Holland, Amsterdam, 1982)
p. 317.

5. H. A. DWYER, AIAA J. 22, 1705 (1984).
6. M. S. SHEPHARD, in Proceedings, Third National Congress on Pressure Vessels and Piping, Culiforniu,

1979, edited by M. S. Shephard and R. H. Gallagher (ASME, New York, 1979), p. 1.
I. R. E. BANK, in Proceedings, Workshop Held ut The University of Marylund, College Park. Marylund,

1983, edited by I. Babuska et al. (SIAM, Philadelphia, 1983), p. 74.
8. R. LOHNER, K. MORGAN, AND 0. C. ZIENKIEWICZ, Comput. MPrh. Appl. Mech. Eng. 51, 441 (1985).
9. E. A. DORFI AND L. O’C. DRURY, J. Comput. Phys. 69, 175 (1987).

10. P. LUCHINI, .I. Comput. Phys. 68, 283 (1987).
11. K. NAKASHI AND G. S. DEIWERT, AIAA J. 24, 948 (1986).
12. R. B. SIMPSON, in Proceedings, Ninth Manitoba Conference on Numerical Mathematics und Comput-

ing, Manitoba, Canadu, 1979, p. 49.
13. I. ALTAS, Adaptive Mesh Generation, Ph. D. thesis, 1988, Department of Mathematics, University of

Saskatchewan, Saskatoon, Canada.
14. J. R. RICE, E. N. HOUSTIS, AND W. R. DYKSEX, Math. Comput. 36, 475 (1981).
15. J. P. ROACHE, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1972).
16. M. J. BERGER, Math. Comput. 45, 301 (1985).
17. K. N. GHIA, U. GHIA, AND C. T. SHIN, in Proceedings, Applied Mechanics, Bioengineering, and Fluids

Engineering Conference, Houston, Texas, 1983, edited by K. N. Ghia et al. (ASME, New York,
1983) p. 35.

18. I. ALTAS AND J. W. STEPHENSON, Appl. Math. Lett., to appear.

